1.

Figure 3

Figure 3 shows the circle C with equation

$$x^2 + y^2 - 10x - 8y + 32 = 0$$

and the line l with equation

$$2y + x + 6 = 0$$

- (a) Find
 - (i) the coordinates of the centre of C,
 - (ii) the radius of C.

(3)

(b) Find the shortest distance between C and	1	l
--	---	---

(5)

2.	The	circle	C has	equation

$$x^2 + y^2 - 6x + 10y + k = 0$$

where k is a constant.

(a) Find the coordinates of the centre of C.

(2)

Given that C does not cut or touch the x-axis,

(b) find the range of possible values for k.

(3)

3.	The	circle	C has	equation
----	-----	--------	-------	----------

$$x^2 + y^2 - 10x + 4y + 11 = 0$$

- (a) Find
 - (i) the coordinates of the centre of C,
 - (ii) the exact radius of C, giving your answer as a simplified surd.

(4)

The line *l* has equation y = 3x + k where *k* is a constant.

Given that l is a tangent to C,

(b) find the possible values of k, giving your answers as simplified surds.

(5)

4.	A	circle	has	equation
----	---	--------	-----	----------

$$x^2 + y^2 - 10x + 16y = 80$$

- (a) Find
 - (i) the coordinates of the centre of the circle,
 - (ii) the radius of the circle.

(3)

Given that P is the point on the circle that is furthest away from the origin O,

(b) find the exact length <i>C</i>	P
------------------------------------	---

(2)

_		
_		
_		
_		
_		
-		
_		
_		
-		
_		
_		
_		
_		

	5.	A	circle	C	has	eq	uation
--	-----------	---	--------	---	-----	----	--------

$$x^2 + y^2 + 6kx - 2ky + 7 = 0$$

where k is a constant.

- (a) Find in terms of k,
 - (i) the coordinates of the centre of C
 - (ii) the radius of C

(3)

The line with equation y = 2x - 1 intersects C at 2 distinct points.

(b) Find the range of possible values of k.

(6)
